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I.  INTRODUCTION 

Several recent reports1-4 have described progress made over the past 
several years in an effort to develop a fully two-dimensional, two-phase flow 
interior ballistic model. This work has focussed on the process of 
flamespread through the propelling charge as a hydrodynamic problem and on the 
influence of the path of flamespread on the formation of potentially dangerous 
pressure waves in the gun chamber. The effort was, to a large extent, 
motivated by the fact that early successes in simulating these phenomena in 
Navy cased-ammunition guns5'6 with one-dimensional, two-phase flow models were 
not reproduced when Army bagged-charge artillery became the subject of study7. 
The presence of circumferential ullage external to the bag apparently offered, 
at least during the very early stages of the interior ballistic cycle, a 
region of high permeability capable of altering the flame path and 
equilibrating longitudinal pressure gradients ~ a process totally outside the 
scope of the one-dimensional representation. A subsequent quasi-two- 
dimensional treatment8 recognizing this possibility rapidly led the way to a 
fully two-dimensional representation known as TDNOVA, the subject of this 
report. 

P.S. Gough, "Two-Dimensional Convective Flamespreading in Packed Beds of 
Granular Propellent, ARBRL-CR-00404, USA ARRADCOM, Ballistic Research 
Laboratory,   Aberdeen Proving Ground,   ML,   July     1979.   (ADttA075326) 

A.W. Horst and P.S. Gough, '•Modeling Ignition and Flamespread Phenomena in 
Bagged Artillery Charges," ARBRL-TR-02263, USA ARRADCOM, Ballistic Research 
Laboratory,   Aberdeen Proving    Ground,   MD,   September  1980.   (AmA091790) 

2 
P.S. Gough, "A Tvo-Dimensional Model of the Interior Ballistics    of Bagged 
Artillery   Charges,       ARBRL-CR-00452,    USA   ARRADCOM,    Ballistic   Research 
Laboratory,   Aberdeen Proving Ground,  MD,     April  1981. 

A.W. Horst, F.U. Robbins, and P.S. Gough, "A Tvo-Dimensional, Two-Phase Flow 
Simulation of Ignition, Flamespread, and Pressure-Wave Phenomena in the 155- 
MM Howitzer,    ARBRL-TR- , USA ARRADCOM,  Ballistic Research Laboratory, 
Aberdeen Proving    Ground,   MD,   (not  yet released). 

5A.W.    Horst,    T.C.    Smith,    and   S.E.    Mitchell,    "Key   Design     Parameters   in 
Controlling   Gun-Environment   Pressure-Wave  Phenomena   -   Theory   Versus 
Experiment,     13th JAHNAF Combustion     Meeting,   CPIA   Publication   273,    Vol     1 
pp.   341-368,   December   1975. 

A.W. Horst and P.S. Gough, "Influence of Propellent Packaging on Performance 
of Havy Case Gun Ammunition," JmiCXX&l a£ RalLLslAsLS., Vol. 1, No. 3, pp. 229- 
258,  1977. ^ 

7 
A.W.    Horst,    C.W.    Nelson,    end   I.W.    May,    "Flame   Spreading   in      Granular 
Propellent Beds:  A Diagnostic Comparison of Theory to Experiment,"    AIAA Paper 
No.   77-856,   AIAA/SAE  13th Propulsion Conference,   July   1977. 

g 
P.S. Gough, "Theoretical Study of Two-Phase Flow Associated with Granular Bag 
Charges, ARBRL-CR-00381, USA ARRADCOM, Ballistic Research Laboratory, 
Aberdeen Proving Ground, MD,  September  1978.   (ADttA062144) 



II.  TECHNICAL DISCUSSION 

A.      Description oJL TDNQVA 

The TDNOVA code provides an unsteady, two-dimensional, axisymmetric, two- 
phase flow representation of the interior ballistic cycle. As mentioned 
previously, the development of TDNOVA was undertaken largely in response to 
the configural complexities associated with the use of bagged artillery 
charges, such as the 155-mm, M203 Propelling Charge depicted in Figure 1. 
Flamespread through bagged charges is believed to be strongly influenced by 
the details of the ullage which initially surrounds the bag and by the 
behavior of the bag material itself. Accordingly, an explicit representation 
is made in TDNOVA of the two-phase region occupied by the propelling charge at 
any time. The flow in the ullage, which surrounds the region occupied by the 
propellent,    is  treated  as unsteady,   inviscid,   and  single phase. 

i 
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Figure  1.      155-mm,   M203 Propelling Charge 

The ullage is divided into several disjoint regions, coupled to one 
another and to the two-phase flow in the propelling charge by means of finite 
jump conditions at all their mutual boundaries. By formulating the theory in 
such a manner as to use directly the jump conditions at the boundary, a 
mechanism is provided for representation of the influence of the bag. 
Impermeability is reflected directly within the momentum jump condition as a 
quasi-steady flow loss. Similarly, the influence of exothermically or 
endothermically reactive components, such as igniter basepads, centercore 
tubes, or wear-reducing liners, may be reflected by means of source terms in 
the  mass  and energy  jump  conditions. 
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The division of ullage into the several regions depicted in Figure 2 is 
based on the instantaneous configurations of the external boundaries (e.g., 
spindle face, chamber/tube sidewall, and projectile base) and the propelling 
charge itself. Each region of ullage may be treated as lumped parameter, 
quasi-one-dimensional (i.e., one-dimensional-with-area-change), or two- 
dimensional, in accordance with user-definable criteria based on physical 
dimensions. 

As suggested earlier, representation of a basepad igniter or centercore 
tube may be treated within the structure of the bag. A centercore ignition 
charge, coaxial with the bag, may also be included in the representation as a 
quasi-one-dimensional, two-phase flow, coupled to the state of the flow within 
the bag and any ullage present at the ends of the chamber by reference to 
finite jump conditions. Representation of the ignition train also admits 
specification of an externally injected stimulus of predetermined flow rate 
and energy. 

Initially, TDNOVA provides a fully two-dimensional analysis of flow 
within the two-phase region occupied by the propellent bed. However, in all 
calculations performed to date, the regions of ullage contiguous to the bag 
have been treated as quasi-one-dimensional, the continuum coordinate being 
defined by the common boundary. Corner regions of ullage are then given a 
lumped-parameter treatment. Figure 3 illustrates this level of 
representation. 

Following the completion of flamespread, rupture of the bag sidewall, and 
equilibration of the radial structure of the pressure field to within some 
user-specified limit, a quasi-two-dimensional approach is introduced, similar 
to that reported previously . For the duration of the ballistic cycle, the 
propelling charge is given a quasi-one-dimensional representation, as is the 
circumferential ullage, while regions of axial ullage at the ends of the 
chamber  are  treated  as  lumped parameter   (see Figure  4). 

Each of these regions of continuous flow is mapped onto a regular figure, 
a unit line or square, by means of a boundary-fitted-mesh-transformation 
algorithm. The method of solution is then based on an explicit, two-step 
marching scheme which utilizes characteristic forms of the balance equations 
at both external and internal boundaries. A detailed description of the code 
has been provided by Gough . The reader is further directed to an earlier 
discussion of application of TDNOVA to the 155-mm, M203 Propelling Charge by 
Horst et al   . 

In the sections that follow, we provide a description of several series 
of baseline calculations performed to assist in evaluation of the operational 
capabilities   of   TDNOVA. 

B.     Cffimpsr.tscn with NOVA 

A direct comparison was made between results predicted by TDNOVA and by 
its quasi-one-dimensional predecessor NOVA . An appropriate data base, a 
dimensionally degenerate  representation of the previously described bagged- 

■g——  

F.S. Gough,   "The  NOVA   Code:   A  User's Manual.   Volume  1.     Description  and Use,' 
IHCR 80-8,   Naval Ordnance Station,   Indian    Head,   ML,   30 December  1980. 
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charge problem, was devised by suppressing the presence of both centercore 
igniter and circumferential ullage. Bag sidewall and centercore tube 
characteristics thus played no role in the problem. Further, the basepad was 
replaced by a predetermined, one-dimensional ignition stimulus. The resulting 
problem is depicted schematically in Figure 5. A summary of required input 
data for both NOVA and TDNOVA is provided in Appendix A. 

It is noted that, in accordance with criteria based on size and structure 
of the flow, the NOVA code may assign a continuum representation, in the axial 
direction, to regions of ullage at either end of the chamber. Calculations 
were performed using the NOVA code both unaltered and with a modification 
introduced to maintain a lumped-parameter representation for these regions, 
similar to that provided by TDNOVA after transformation to the quasi-two- 
dimensional representation. In both cases, the NOVA simulations employed 30 
axial stations, while a 30x7 mesh was used for the TDNOVA runs. Finally, a 
TDNOVA calculation was performed with the quasi-two-dimensional representation 
invoked from time zero. In the absence of circumferential ullage, this last 
TDNOVA treatment was geometrically equivalent to that of the modified NOVA 
code. 

A summary of results is provided in Table 1. All values for maximum 
chamber pressure fall within 2% of one another, while those for muzzle 
velocity fall within 1%. Values for "^P^, the initial reverse pressure 
difference between breech and forward ends of the chamber, represent small 
differences between large numbers and are not appropriately compared in the 
same fashion. Rather, we choose to compare the entire pressure-difference 
versus time profiles in Figure 6. Similarly, we display a comparison of axial 
flamespread profiles in Figure 7. We note a favorable level of agreement for 
all parameters. 

TABLE 1.  SUMMARY OF NOVA/TDNOVA RESULTS 

CODE 

NOVA (30x1 mesh) 

NOVA - modified 
treatment of end 
ullage (30x1 mesh) 

MAX PRESSURE MUZZLE VELOCITY INITIAL REVERSE 
(MPa) (m/s) PRESSURE DIFF 

(MPa) 

323 814 -26 

325 816 -21 

TDNOVA (30x7 mesh)    326 

TDNOVA (30x1 mesh)    327 

820 

820 

-21 

-21 
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Figure  4.     Quasi-Two-Dimensional Mesh of  TDNOVA 
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Figure  5.     Schematic Representation of  Quasi-One-Dimensional Test  Problem 
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C.      Intluenge s£ Et.oI Criterion 

We noted earlier that, upon completion of flamespread, rupture of any bag 
sidewall material present, and equilibration of the radial structure of the 
pressure field to within some user-specified limit, TDNOVA introduces a quasi- 
two-dimensional approach for the duration of the calculation. This 
transformation is invoked in the interest of economy and, in consideration of 
the scope for which TDNOVA is intended, appears to be well motivated. The 
particular criterion employed involves Ptol, a parameter which is compared, at 
each axial location, to the difference in values for the pressure at the tube 
wall and centerline, divided by the value at the tube wall. When this 
quantity becomes less than P*0| at all axial stations, the transformation 
takes place. 

As this transformation carries with it a number of assumptions^ required 
to establish a quasi-one-dimensional description of flow within the two-phase 
medium, we undertook to determine the influence of Ptoi on the remainder of 
the solution. A previously established data base4 (see Figure 8 and Appendix 
B) for the 155-mm, M203 Propelling Charge was employed, with Ptoi varied 
over a wide range of values. Results are summarized in Table 2, and a 
comparison of pressure-difference versus time profiles is displayed in Figure 
9. All values of Ptol equal to or greater than 0.05 yielded identical 
results, as the time for the final point of bag rupture became the controlling 
parameter, prohibiting transformation at any earlier times. Even for values 
oi ptol as sma11 as 0.005, results remain virtually unchanged. Pressure and 
temperature fields, at the instant of transformation, are compared in Figures 
10 and 11. Little difference in structure is noted for the various 
conditions. Prediction of flamespread is, of course, totally unaffected by 
^tol'   ^ts  completion  being  a requirement  for transformation. 

TABLE   2.      INFLUENCE OF Ptol  ON TDNOVA  RESULTS 

Ptol (and 

time of trans- 
formation,   ms) 

0.005 (3.51) 

0.010 (3.49) 

0.050 (3.19) 

>0.050 (3.19) 

MAX PRESSURE MUZZLE VELOCITY INITIAL REVERSE 
(MPa) (m/s) PRESSURE DIFF 

(MPa) 

365 842 -3 

363 842 -3 

363 842 -2 

363 842 -2 
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D.      Influence al Mstsh 

To complete this baseline evaluation of TONOVA, attention must also be 
directed to the sensitivity of solutions to the mesh employed to represent the 
two-dimensional, two-phase region of flow. The input data base provided in 
Appendix B was again selected for this phase of the study. From 10 to 35 
axial mesh points and from 3 to 9 radial mesh points were employed to 
represent the region occupied by the propellant bed. While not fundamentally 
linked to the limitations imposed by the macroscopic nature of the governing 
equations for TDNOVA, a selection of mesh size somewhere in the range studied 
is certainly compatible with both the intended purpose and physical scope of 
TDNOVA. Further, in the case of any extensive propelling charge design 
studies, the need for economy may also limit one to this range of values. 

A summary of results from these calculations is provided in Table 3. We 
note some apparent dependence of predicted performance on the number of radial 
mesh points, though the total spread is less than 4% for values of maximum 
chamber pressure and less than 2% for those of muzzle velocity. As before, 
the initial reverse pressure difference, being calculated as the difference of 
two large numbers, exhibits a large percentage but small absolute variation. 
Selected pressure-difference versus time profiles, flamespread contours, and 
pressure field plots are displayed in Figures 12 through 16. 

TABLE 3.  SUMMARY OF TDNOVA RESULTS FOR VARIOUS MESHES 

MESH MAX PRESSURE MUZZLE VELOCITY INITIAL REVERS 
(axial pts x (MPa) (m/s) PRESSURE DIFF 
radial pts) (MPa) 

20x3 357 836 -3 
25x3 354 834 -3 
30x3 357 836 -3 
35x3 358 836 -4 

10x5 359 838 -3 
20x5 359 838 -4 
25x5 363 839 -3 
30x5 359 830 -5 
35x5 356 831 -7 

20x7 362 840 -2 
25x7 364 843 -2 
30x7 363 842 -3 
35x7 366 835 -3 

20x9 364 842 -2 
25x9 368 845 -1 
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III.     CONCLUSIONS 

In an effort to provide a baseline evaluation of the TDNOVA code, several 
series of calculations were performed. Based on the results of these 
calculations,  the following  conclusions can be drawn: 

1. Simulations of a quasi-one-dimensional propelling charge obtained 
using TDNOVA and NOVA, its quasi-one-dimensional predecessor, are essentially 
equivalent. When TDNOVA is modified to introduce an immediate transformation 
to its quasi-two-dimensional mode and when NOVA is also modified to maintain a 
lumped-parameter representation of regions of axial ullage, results from the 
two codes become virtually identical. 

2. For at least one, relevant, bagged-charge problem, results provided 
by TDNOVA are only minimally influenced by the value selected for Ptol' a 

parameter used to identify adequate equilibration of the radial pressure field 
before transformation to a quasi-two-dimensional representation of flow is 
allowed. Antecedent requirements for bag rupture and completion of 
flamespread apparently allow substantial equilibration of radial pressures 
prior  to  application of  the Ptol criterion. 

3. A limited study of the influence of mesh density on TDNOVA results 
failed to demonstrate absolute convergence of results; nevertheless, the 
variation in predicted quantities was shown to be acceptably small for a 
number of  meshes  covering the  current  range of  practical  interest. 
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APPENDIX A 

INPUT DATA FOR NOVA/TDNOVA COMPARISON CALCULATIONS 
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NOTE: The NOVA code was developed prior to the introduction of 
the International System of Units (SI) and employs English units 
throughout. A summary of conversion factors required to effect 
conversion to SI units, employed in TDNOVA, is provided below. 

TO CONVERT FROM NOVA 
UNITS 

TO TDNOVA 
UNITS 

MULTIPLY BY 

LENGTH 

MASS 

TEMPERATURE 

FORCE 

VELOCITY 

PRESSURE 

DENSITY 

COVOLUME 

INTERNAL ENERGY 

THERMAL CONDUCTIVITY 

THERMAL DIFFUSIVITY 

in. 

Ibm 

0R 

Ibf 

in./sec 

Ibf/in." 

Ibm/in.J 

in.3/lbm 

Ibf-in./Ibm 

Ibf-in./in.-sec 

in. /sec 

cm 

gm 

K 

N 

cm/sec 

MPa 

3 
gm/cm 

cin3/gm 

J/gm 

2.54 

453.59237 

5/9 

4.448222 

2. 54 

0.006894757 

27.679905 

0.036127292 

0.000249089 

J/cm-sec-K  0.080068 

cm /sec 6.4516 

BURN RATE PRE-EXPONENT in./sec-psin   cm/sec-MPa"     2^.54  
<0.00689457)n 
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UQiLh  CQCE.L CQMEAEISQH IMEUI DATA EASE 

CONTROL PARAMETERS 

PRINT 
GRAPH 
DISK WRITE 
DISK READ 
I.B. TABLE 
FLAME TABLE 
PRESSURE TABLES 
EROSIVE EFFECT 
DYNAMIC EFFECT 
WALL TEMPERATURE CALCULATION 
LEFT HAND BOUNDARY CONDITION 
RIGHT HAND BOUNDARY CONDITION 
LEFT HAND RESERVOIR 
RIGHT HAND RESERVOIR 
BED PRECOMPRESSED 
HEAT LOSS CALCULATION 
INSULATING LAYER 
BORE RESISTANCE FUNCTION 
EXPLICIT COMPACTION WAVE 
MUZZLE SLOWDOWN ANALYSIS 
CALCOMP SUMMARY PLOTS 

T 
T 
F 
F 
T 
T 
T 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

INTEGRATION PARAMETERS 

NUMBER OF STATIONS AT WHICH DATA ARE STORED 30 
NUMBER OF STEPS BEFORE LOGOUT 100 
TIME STEP FOR DISK START 0 
NUMBER OF STEPS FOR TERMINATION 3000 
TIME BEFORE PRINTOUT .0005 
PRESSURE RATIO FOR LP ANALYSIS OF LARGE 

ULLAGE REGION .2 
TIME FOR TERMINATION (SEC) .05 
PROJECTILE TRAVEL FOR TERMINATION (INS) 205. 
MAXIMUM TIME STEP (SEC) .0001 
STABILITY SAFETY FACTOR 2. 
SOURCE STABILITY FACTOR .05 
SPATIAL RESOLUTION FACTOR .01 
TIME INTERVAL FOR I.B. TABLE STORAGE (SEC) .0002 
TIME INTERVAL FOR PRESSURE TABLE STORAGE (SEC)      .0002 

FILE COUNTERS 

NUMBER OF STATIONS TO SPECIFY TUBE RADIUS 3 
NUMBER OF TIMES TO SPECIFY PRIMER DISCHARGE 3 
NUMBER OF POSITIONS TO SPECIFY PRIMER DISCHARGE 3 
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FILE COUNTERS (CONTINUED) 
NUMBER OF ENTRIES IN BORE RESISTANCE TABLE 7 
NUMBER OF ENTRIES IN WALL TEMPERATURE TABLE 0 
NUMBER OF ENTRIES IN FILLER ELEMENT TABLE 0 
NUMBER OF TYPES OF PROPELLANTS 1 
NUMBER OF BURN RATE DATA SETS 2 
NUMBER OF ENTRIES IN VOID FRACTION TABLES 0 
NUMBER OF ENTRIES IN PRESSURE HISTORY TABLES 3 
NUMBER OF ENTRIES IN LEFT BOUNDARY SOURCE TABLE 0 
NUMBER OF ENTRIES IN RIGHT BOUNDARY SOURCE TABLE 0 
NUMBER OF WALL STATIONS FOR INVARIANT EMBEDDING 0 
NUMBER OF BED STATIONS FOR INVARIANT EMBEDDING 0 

GENERAL PROPERTIES OF INITIAL AMBIENT GAS 

INITIAL TEMPERATURE (DEG R) 
INITIAL PRESSURE (PSD 
MOLECULAR WEIGHT (LBM/LBMOL) 
RATIO OF SPECIFIC HEATS 

5 30. 
14.7 
23.36 
1.243 

GENERAL PROPERTIES OF PROPELLANT BED 

INITIAL TEMPERATURE (DEG R) 530 
VIRTUAL MASS COEFFICIENT FOR MOMENTUM TRANSFER 0 
VIRTUAL MASS COEFFICIENT FOR ENERGY DISSIPATION 0 
MINIMUM IMPACT VELOCITY FOR EXPLICIT 

COMPACTION WAVE (IN/SEC) 100000000 
FRICTION FACTOR 1 75 

PROPERTIES OF PROPELLANT 1 

PROPELLANT TYPE 
MASS OF PROPELLANT (LBM) 
DENSITY OF PROPELLANT (LBM) 
FORM FUNCTION INDICATOR 
OUTSIDE DIAMETER (INS) 
INSIDE DIAMETER (INS) 
LENGTH (INS) 
NUMBER OF PERFORATIONS 
SLOT WIDTH (INS) 

M30A1 RAD-77G-069805 
26.15 

.0572 
7 

. 4173 

.0338 

.9481 
7. 
0. 

RHEOLOGICAL PROPERTIES 

SPEED OF COMPRESSION WAVE IN SETTLED BED 
(IN/SEC) 

SETTLING POROSITY 
SPEED OF EXPANSION WAVE (IN/SEC) 

6000 
. 4243 

50000 
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.006918 

SOLID PHASE THERMOCHEMISTRY 

MAXIMUM PRESSURE FOR BURN RATE DATA 
ILBF/IH»»2) 10000 

BURNING RATE PRE-EXPONENTIAL FACTOR 
(IN/SEC/PSI**BN) 

BURNING RATE EXPONENT .bJJ/ 
MAXIMUM PRESSURE FOR BURN RATE DATA 

(LBF/IM*»2) 100000. 
BURNING RATE PRE-EXPONENTIAL FACTOR 

(IN/SEC/PSI»»BN) .001743 
BURNING RATE EXPONENT .7864 
BURNING RATE CONSTANT 0- 
IGNITION TEMPERATURE (DEG R) 8°°■ 
ARRHENIUS ACTIVATION ENERGY (LBF-IN/LBMOL) 0. 
FREQUENCY FACTOR (SEC*»-1) 0- 
THERMAL CONDUCTIVITY <LBF/SEC/DEG R) -02 
THERMAL DIFFUSIVITY (IN«*2/SEC) .0003 
EMMISIVITY FACTOR 0- 

GAS PHASE THERMOCHEMISTRY 

CHEMICAL ENERGY RELEASED IN BURNING 
(LBF-IN/LBM) 17600000. 

MOLECULAR WEIGHT (LBM/LBMOL) 23.36 
RATIO OF SPECIFIC HEATS 1.243 
COVOLUME 28.50 

LOCATION OF PACKAGE(S) 

PACKAGE    LEFT BODY (INS)   RIGHT BODY (INS)   MASS (LBM) 

I 1.00 31.00 26.15 

PROPERTIES OF IGNITER 

CHEMICAL ENERGY RELEASED IN BURNING 
(LBF-IN/LBM) 10000000. 

MOLECULAR WEIGHT (LBM/LBMOL) 23.36 
RATIO OF SPECIFIC HEATS 1.243 
SPECIFIC VOLUME OF SOLID (IN**3/LBM) 0. 

IGNITER DISCHARGE FUNCTION (LBM/IN/SEC) 

0.98       0.99 

6.00 0.00 
6.00 0.00 
0.00       0.00 

3^! 

POS. (INS) 0 00 
TIME (SEC) 
0.000 6 00 
0.010 6 00 
0.011 0 00 



PARAMETERS TO SPECIFY TUBE GEOMETRY 

RESISTANCE 
250. 

3350. 
4950. 
3625. 
3250. 
2500. 
1500. 

DISTANCE (INS) RADIUS (INS) 
0.00 3.50 
35.00 3.09 

240.00 3.09 

BORE RESISTANCE TABLE 

POSITION (INS) RESISTANCE (PSD 
35.00 
35. 40 
36.00 
36.55 
37.05 
39. 50 

240.00 

THERMAL PROPERTIES OF TUBE 

THERMAL CONDUCTIVITY (LBF/SEC/DEG R) 0. 
THERMAL DIFFUSIVITY (IN**2/SEC) 0. 
EMISSIVITY FACTOR 0. 
INITIAL TEMPERATURE (DEG R) 530. 

PROJECTILE AND RIFLING DATA 

INITIAL POSITION OF BASE OF PROJECTILE (INS) 35.00 
MASS OF PROJECTILE (LBM) 103.00 
POLAR MOMENT OF INERTIA (LBM-IN**2) 0. 
ANGLE OF RIFLING (DEG) 0. 

POSITIONS FOR PRESSURE TABLE STORAGE (INS) 

0.10      17.50      34.75 
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inmVh QQUEx QQUEhElSQU 1HEU1  DAIA BASE 

CONTROL PARAMETERS 

NPRINT (0=NO PRINT,1=PRINT) 
NSUMRY (0=NO SUMMARY TABLES,1=YES) 
NPLOT (0=NO ISOMETRIC CARPET PLOTS,1=PLOT) 
NVHL (0=HIDDEN LINES DELETED,1=RETAINED) 
NPLCON (0=NO CONTOUR PLOTS,1=PLOT) 
NPLFLO (0=NO FLOW PLOTS,1=PLOT) 
NPLFLM (0=NO FLAMESPREAD PLOT,l=PLOT) 
NDSKW (0=NO DISC SAVE,1=DISC SAVE) 
NDSKR (0=NO DISC START,>0=DISC START AT 

STEP NDSKR) 

1 
1 
1 
0 
0 
0 
1 
0 

ISOMETRICALLY PLOTTED QUANTITIES (0=NO,l=YES) 

MESH 
POROSITY 
GRANULAR STRESS 
PRESSURE 
DENSITY 
GAS AXIAL VELOCITY 
SOLID AXIAL VELOCITY 
GAS RADIAL VELOCITY 
SOLID RADIAL VELOCITY 
GAS TEMPERATURE 
PARTICLE SURFACE TEMPERATURE 

0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 

CONTOUR PLOTTED QUANTITIES (0=NO,l=YES) 

MESH 
POROSITY 
GRANULAR STRESS 
PRESSURE 
DENSITY 
GAS AXIAL VELOCITY 
SOLID AXIAL VELOCITY 
GAS RADIAL VELOCITY 
SOLID RADIAL VELOCITY 
GAS TEMPERATURE 
PARTICLE SURFACE TEMPERATURE 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

SCALE FACTOR FOR PLOTTING 
LENGTH OF Z-AXIS IN CALCOMP PLOTS 
LENGTH OF R-AXIS (INS) 
LENGTH OF ORDINATE AXIS (INS) 

(INS) 12. 
4. 
5. 
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LOGOUT PARAMETERS 

NUMBER OF STEPS BEFORE LOGOUT 
TIME INCREMENT BEFORE LOGOUT (MSEC) 
NUMBER OF PRESSURE SUMMARY STATIONS 
TIME INCREMENT FOR PRESSURE SUMMARY STORAGE 

(MSEC) 

2000 

TERMINATION PARAMETERS 

MAXIMUM NUMBER OF STEPS BEFORE TERMINATION 2000 
MAXIMUM INTEGRATION TIME (MSEC) 25. 
MAXIMUM PROJECTILE TRAVEL (CMS) 520.7 

MESH PARAMETERS 

MESH ALLOCATION MODE (0=STATIC,1=DYNAMIC) 
MAXIMUM NUMBER OF STORAGE POINTS FOR DYNAMIC 

MESH ALLOCATION 
NUMBER OF MESH POINTS IN AXIAL DIRECTION 
NUMBER OF MESH POINTS IN RADIAL DIRECTION 
NUMBER OF ITERATIONS TO DETERMINE INITIAL 

MESH 
SAFETY FACTOR FOR C-F-L CRITERION 
MAXIMUM FRACTIONAL DISPLACEMENT FOR CONVER- 

GENCE OF INITIAL MESH DISTRIBUTION 
OVER-RELAXATION FACTOR FOR DETERMINATION OF 

INITIAL MESH DISTRIBUTION 
PRESSURE TOLERANCE FACTOR FOR REDUCTION TO 

QUASI-TWO-DIMENSIONAL REPRESENTATION 
AXIAL SPATIAL RESOLUTION FACTOR 
RADIAL SPATIAL RESOLUTION FACTOR 

0 
30 
7 

200 
1.1 

.00001 

1.6 

.05 

.1 

. 1 

AMBIENT CONDITIONS 

INITIAL TEMPERATURE (DEG K) 
INITIAL PRESSURE (MPA) 
CHARGE STANDOFF (CMS) 

294. 4 
.1014 

0. 

SOLID PHASE CONSTITUTIVE DATA 

INITIAL MASS OF GRANULAR BED (KG) 
INITIAL POROSITY OF GRANULAR BED 
SETTLING POROSITY OF GRANULAR BED 
SPEED OF COMPRESSION WAVE (M/SEC) 
SPEED OF EXPANSION WAVE (M/SEC) 
DENSITY OF SOLID PHASE (GM/CC) 
THERMAL CONDUCTIVITY (J/CM-SEC-DEG K) 
THERMAL DIFFUSIVITY (CM**2/SEC) 

11 
0 

152 
1270 

1 

86 

4243 
4 
0 
583 
0016 
0006 
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GAS PHASE CONSTITUTIVE DATA 

RATIO OF SPECIFIC HEATS 
MOLECULAR WEIGHT (GM/GM-MOL) 
COVOLUME (CC/GM) 

1 .243 
23. 36 
1.030 

SOLID PHASE COMBUSTION CHARACTERISTICS 

IGNITION TEMPERATURE (DEG K) 
CHEMICAL ENERGY (J/GM) 

444.4 
4384. 

MAX PRESSURE 
(MPA) 

ADD CONSTANT 
(CM/SEC) 

PRE-EXPONENT 
(CM/SEC-MPA»»BN) 

EXPONENT 

68.95 
689.50 

0. 
0. 

. 4117 

. 2218 
.6337 
. 7864 

GRAIN GEOMETRY 

EXTERNAL DIAMETER (CM) 
LENGTH (CM) 
DIAMETER OF PERFORATIONS (CM) 
NUMBER OF PERFORATIONS 

1 .060 
2. 408 
.086 

7. 

AX POS 
(CMS) 

RAD POS 
(CMS) 

FLOW RES 
DATA 

REACTIVITY 
DATA 

NO. PTS 
PRE-ASS 

DATA TYPE 
(0=D,1=N) 

CONFIGURATION OF REAR OF BAG 

2.54 
2.54 

0.00 
8. 86 

0 
0 

0 
0 

0 
0 

0 
0 

CONFIGURATION OF FRONT OF BAG 

78.74 
78. 74 

0.00 
7. 97 

0 
0 

0 
0 

0 
0 

0 
0 

CONFIGURATION OF INSIDE OF BAG 

2.54 
78. 74 

0.00 
0.00 

0 
0 

0 
0 

0 
0 

0 
0 

CONFIGURATION OF OUTSIDE OF BAG 

2.54 
78.74 

8. 86 
7.97 

0 
0 

0 
0 

0 
0 

0 
0 
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AXIAL POSITION RADIAL POSITION 
(CMS) (CMS) 

CONFIGURATION OF BREECH 

0.00 0.00 
0 . 00 8.89 

CONFIGURATION OF PROJECTILE BASE 

88.90 0.00 
88.90 7.85 

CONFIGURATION OF INSIDE BOUNDARY 

0.00 0.00 
88.90 0.00 

CONFIGURATION OF OUTSIDE BOUNDARY 

0.00 8.89 
88.90 7.85 

REPRESENTATION OF IGNITION TRAIN 

NCCORE (0=NO CENTERC0RE,1=YES) 0 
BASEPAD REACTIVITY DATA 0 
NTABAG (0=N0 EXTERNAL STIMULUS,1=YES) I 

CHEMICAL ENERGY OF EXTERNAL STIMULUS (J/GM)    2491. 

RATE OF DISCHARGE OF EXTERNAL STIMULUS 

RATE (GM/CC/SEC) AT TIME  0.00 MSEC 

RADIAL LOCATION (CM) 
0.00       8.82 8.84 

AXIAL LOCATION (CM) 
0.00          4.65       4.65 0.00 
2.50          4.65       4.65 0.00 
2.52          0.00       0.00 0.00 
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RATE OF DISCHARGE OF EXTERNAL STIMULUS (CONTINUED) 

RATE (GM/CC/SEC) AT TIME 10.00 MSEC 

RADIAL LOCATION (CM) 
0.00      8.82 8.84 

AXIAL LOCATION (CM) 
0-00          4.65      4.65 0.00 
2-50          4.65       4.65 0.00 
2-52          0.00       0.00 0.00 

RATE (GM/CC/SEC) AT TIME 11.00 MSEC 

RADIAL LOCATION (CM) 
0.00       8.82 8.84 

AXIAL LOCATION (CM) 
0-00          0.00      0.00 0.00 
2-50          0.00      0.00 0.00 
2-52         0.00      0.00 0.00 

PROPERTIES OF PROJECTILE 

PROJECTILE MASS (KG) 

NUMBER OF ENTRIES IN BORE RESISTANCE TABLE 
RESISTANCE LAW NUMBER 
NUMBER OF FILLER ELEMENTS 

46. 72 

7 
1 
0 

PROJECTILE TRAVEL 
(CMS) 

0.000 
1.016 
2.540 
3. 937 
5. 207 

11.430 
520.700 

BORE RESISTANCE DATA 

RESISTIVE PRESSURE 
(MPA) 

1 .72 
23.10 
34.10 
25.00 
22. 40 
17.20 
10. 30 

AXIAL LOCATION 
(CMS) 

.25 
44. 45 
88. 27 

LOCATION OF POINTS FOR PRESSURE SUMMARY TABLE 

WALL (0) OR AXIS (1) 

0 
0 
0 
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APPENDIX B 

INPUT DATA FOR TDNOVA Ptol AND MESH-SENSITIVITY CALCULATIONS 
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innQVh  CQDE^ Etai AMD MESH SIUQI CAIA BASE 

CONTROL PARAMETERS 

NPRINT (0=NO PRINT,1=PRINT) 1 
NSUMRY (0=NO SUMMARY TABLES,1=YES) 2 
NPLOT (0=NO ISOMETRIC CARPET PLOTS,1=PLOT) 1 
NVHL (0=HIDDEN LINES DELETED,1=RETAINED) 0 
NPLCON (0=NO CONTOUR PLOTS,1=PLOT) 0 
NPLFLO (0=NO FLOW PLOTS,1=PLOT) 0 
NPLFLM (0=NO FLAMESPREAD PLOT,l=PLOT) 1 
NDSKW (0=NO DISC SAVE,1=DISC SAVE) 0 
NDSKR (0=NO DISC START,>0=DISC START AT 

STEP NDSKR) 0 

ISOMETRICALLY PLOTTED QUANTITIES (0=NO,1=YES) 

MESH 0 
POROSITY 0 
GRANULAR STRESS 0 
PRESSURE 1 
DENSITY 0 
GAS AXIAL VELOCITY 0 
SOLID AXIAL VELOCITY 0 
GAS RADIAL VELOCITY 0 
SOLID RADIAL VELOCITY 0 
GAS TEMPERATURE 1 
PARTICLE SURFACE TEMPERATURE 0 

CONTOUR PLOTTED QUANTITIES (0=NO,1=YES) 

MESH 0 
POROSITY 0 
GRANULAR STRESS 0 
PRESSURE 0 
DENSITY 0 
GAS AXIAL VELOCITY 0 
SOLID AXIAL VELOCITY 0 
GAS RADIAL VELOCITY 0 
SOLID RADIAL VELOCITY 0 
GAS TEMPERATURE 0 
PARTICLE SURFACE TEMPERATURE 0 

SCALE FACTOR FOR PLOTTING .4 
LENGTH OF Z-AXIS IN CALCOMP PLOTS (INS)           12. 
LENGTH OF R-AXIS (INS) 4. 
LENGTH OF ORDINATE AXIS (INS) 5. 
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LOGOUT PARAMETERS 

NUMBER OF STEPS BEFORE LOGOUT 
TIME INCREMENT BEFORE LOGOUT (MSEC) 
NUMBER OF PRESSURE SUMMARY STATIONS 
TIME INCREMENT FOR PRESSURE SUMMARY STORAGE 

(MSEC) 

2000 

TERMINATION PARAMETERS 

MAXIMUM NUMBER OF STEPS BEFORE TERMINATION 2000 
MAXIMUM INTEGRATION TIME (MSEC) 25. 
MAXIMUM PROJECTILE TRAVEL (CMS) 520.7 

MESH PARAMETERS 

MESH ALLOCATION MODE (0=STATIC,1=DYNAMIC) 
MAXIMUM NUMBER OF STORAGE POINTS FOR DYNAMIC 

MESH ALLOCATION 
NUMBER OF MESH POINTS IN AXIAL DIRECTION 
NUMBER OF MESH POINTS IN RADIAL DIRECTION 
NUMBER OF ITERATIONS TO DETERMINE INITIAL 

MESH 
SAFETY FACTOR FOR C-F-L CRITERION 
MAXIMUM FRACTIONAL DISPLACEMENT FOR CONVER- 

GENCE OF INITIAL MESH DISTRIBUTION 
OVER-RELAXATION FACTOR FOR DETERMINATION OF 

INITIAL MESH DISTRIBUTION 
PRESSURE TOLERANCE FACTOR FOR REDUCTION TO 

QUASI-TWO-DIMENSIONAL REPRESENTATION 
AXIAL SPATIAL RESOLUTION FACTOR 
RADIAL SPATIAL RESOLUTION FACTOR 

VARIOUS 
VARIOUS 

200 
1. 1 

.00001 

1 . 6 

VARIOUS 
. 1 
.1 

AMBIENT CONDITIONS 

INITIAL TEMPERATURE (DEG K) 
INITIAL PRESSURE (MPA) 
CHARGE STANDOFF (CMS) 

294.4 
. 1014 

0. 

SOLID PHASE CONSTITUTIVE DATA 

INITIAL MASS OF GRANULAR BED (KG) 
INITIAL POROSITY OF GRANULAR BED 
SETTLING POROSITY OF GRANULAR BED 
SPEED OF COMPRESSION WAVE (M/SEC) 
SPEED OF EXPANSION WAVE (M/SEC) 
DENSITY OF SOLID PHASE (GM/CC) 
THERMAL CONDUCTIVITY (J/CM-SEC-DEG 
THERMAL DIFFUSIVITY (CM##2/SEC) 

11 
0 
0 

152 
1270 

1 
K) 

86 

4 
0 
583 
0016 
0006 
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GAS PHASE CONSTITUTIVE DATA 

RATIO OF SPECIFIC HEATS 
MOLECULAR WEIGHT (GM/GM-MOL) 
COVOLUME (CC/GM) 

1 . 243 
23. 36 
1 .030 

SOLID PHASE COMBUSTION CHARACTERISTICS 

IGNITION TEMPERATURE <DEG K) 
CHEMICAL ENERGY (J/GM) 

MAX PRESSURE 
(MPA) 

68.95 
689.50 

ADD CONSTANT 
(CM/SEC) 

0. 
0. 

444. 4 
4384. 

PRE-EXPONENT 
(CM/SEC-MPA#»BN) 

.4117 

.2218 

EXPONENT 

6337 
7864 

GRAIN GEOMETRY 

EXTERNAL DIAMETER (CM) 
LENGTH (CM) 

DIAMETER OF PERFORATIONS (CM) 
NUMBER OF PERFORATIONS 

1.060 
2.408 
.086 

7. 

AX POS 
(CMS) 

2.54 
2. 54 
2.54 

RAD POS 
(CMS) 

1 .27 
3.40 
7.62 

FLOW RES 
DATA 

REACTIVITY 
DATA 

NO. PTS 
PRE-ASS 

CONFIGURATION OF REAR OF BAG 

1 
1 
0 

1 
0 
0 

0 
0 
0 

DATA TYPE 
(0=D,1=N) 

0 
0 
0 

78. 74 
78. 74 

1 . 27 
7.62 

CONFIGURATION OF FRONT OF BAG 

2 
0 

0 
0 

0 
0 

0 
0 

2.54 
78. 74 

1 . 27 
1 . 27 

CONFIGURATION OF INSIDE OF BAG 

3 
0 

0 
0 

0 
0 

0 
0 

2.54 
27.94 
78.74 

7.62 
7.62 
7.62 

CONFIGURATION OF OUTSIDE OF BAG 

1 
4 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 
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AXIAL POSITION 
(CMS) 

RADIAL POSITION 
(CMS) 

CONFIGURATION OF BREECH 

0.00 
0.00 
-3. 45 

0.00 
7.06 
8. 48 

CONFIGURATION OF PROJECTILE BASE 

87. 38 
87. 38 
96.42 

0.00 
7.14 
7.85 

CONFIGURATION OF INSIDE BOUNDARY 

0.00 
87. 38 

0.00 
0.00 

CONFIGURATION OF OUTSIDE BOUNDARY 

-3. 45 
92. 46 
96. 42 

8. 48 
8.05 
7. 85 

REPRESENTATION OF IGNITION TRAIN 

NCCORE (0=N0 CENTERCORE,1=YES) 
BASEPAD REACTIVITY DATA 
NTABAG (0=N0 EXTERNAL STIMULUS,I=YES) 

1 
1 
0 

PROPERTIES OF SOLID PHASE IN CENTERCORE 

SOLID PHASE CONSTITUTIVE DATA 

INITIAL MASS OF GRANULAR BED (KG) 
INITIAL POROSITY OF GRANULAR BED 
SETTLING POROSITY OF GRANULAR BED 
SPEED OF COMPRESSION WAVE (M/SEC) 
SPEED OF EXPANSION WAVE (M/SEC) 
DENSITY OF SOLID PHASE (GM/CC) 
THERMAL CONDUCTIVITY (J/CM-SEC-DEG K) 
THERMAL DIFFUSIVITY (CM»»2/SEC) 

.1134 
0. 

. 40 
442. 

1270. 
1 . 799 
.0016 
.0006 
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SOLID PHASE COMBUSTION CHARACTERISTICS 

IGNITION TEMPERATURE (DEC K) 
CHEMICAL ENERGY (J/GM) 

MAX PRESSURE 
(MPA) 

.52 
690.00 

ADD CONSTANT 
(CM/SEC) 

0. 
0. 

300 . 
2489 • 

PRE-EXPONENT 1 EXPONENT 
(CM/SEC-MPA»»BN) 

2.508 .4620 
2.007 . 1330 

GRAIN GEOMETRY 

EXTERNAL DIAMETER (CM) 
LENGTH (CM) 
DIAMETER OF PERFORATIONS (CM) 
NUMBER OF PERFORATIONS 

. 3 
0. 
0 . 
0. 

PROPERTIES OF PROJECTILE 

PROJECTILE MASS (KG) 46. 72 

NUMBER OF ENTRIES IN BORE RESISTANCE TABLE 
RESISTANCE LAW NUMBER 
NUMBER OF FILLER ELEMENTS 

7 
1 
0 

BORE RESISTANCE DATA 

PROJECTILE TRAVEL 
(CMS) 

RESISTIVE PRESSURE 
(MPA) 

0.000 
1 .016 
2. 540 
3.937 
5. 207 

11.430 
520.700 

1.72 
23. 10 
34. 10 
25.00 
22.40 
17. 20 
10. 30 

BAG FLOW RESISTANCE DATA 

YPE INIT FRICTION RUPTURE STRESS RUPTURE INTERVAL 
FACTOR (MPA) (MSEC) 

1 .01 . 30 0.0 
2 101.00 .60 0.0 
3 101.00 .60 2.0 
4 101.00 . 30 0.0 
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DATA TO DESCRIBE REACTIVITY OF BAG SUBSTRATE 1 

ENERGY RELEASED DURING DECOMPOSITION (J/GM)    2489. 

BAG SUBSTRATE DISCHARGE CHARACTERISTICS 

TIME RATE OF DISCHARGE 
(MSEC) (GM/CM»*2-SEC) 

0.0 
0.1 

2.62 
26. 20 

30.0 26.20 

LOCATION OF POINTS FOR PRESSURE SUMMARY TABLE 

AXIAL LOCATION WALL (0) OR AXIS (1) 
(CMS) 

•25 0 
44.45 0 
88.27 0 
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